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Abstract: Increasing arsenic (As) pollution is posing potential endangerment to mangrove wetland
ecosystems. Mangrove phytoextraction, translocation, and responses to As exposure must be urgently
addressed. In this study, the growth and physiological response of Kandelia obovata seedlings were
examined after addition of 25−200 mg kg−1 As under sediment culture conditions. Results showed
that the seedling morphological variations were not significant below 100 mg kg−1 compared to the
control group, indicating superoxide dismutase, peroxidase, and catalase synergetic interaction to
resist the As exposure. High As concentrations (150–200 mg kg−1) inhibited the seedling growth
accompanied by a significant increase in malondialdehyde content and decrease in activities of
antioxidant enzymes. Toxicity symptoms and mortality appeared in 200 mg kg−1 As, presumably
because the plant reached the limit of As tolerance. Besides, As accumulated mainly in roots,
accounting for 87.04–97.85% of the total As, and the bioaccumulation factor (BCF) was >100%.
However, the BCF and translocation factor (TF) in stems and leaves were below unity, illustrating
a weak capacity of transferring As to aerial parts of the seedlings. Overall, K. obovata is a potential
remediated species in polluted coastal wetlands due to high phytoextraction capacity and high
tolerance to As exposure.

Keywords: Kandelia obovata; arsenic; antioxidant enzymes; bioaccumulation factor; translocation factor

1. Introduction

Mangroves are evergreen, growing in tropical or subtropical coastal intertidal wetlands.
As the main producers of estuaries and wetland ecosystems, mangroves play a critical
role in preventing waves, reinforcing embankments, protecting benthic biodiversity, and
maintaining the balance of mangrove ecosystems [1–3]. During the past decade, large
numbers of wastewater pollutants containing heavy metals were discharged into mangrove
wetlands [4,5]. The mangrove systems have become the main repository of heavy metals
because of their specific physico-chemical properties, such as a high content of sulfides,
organic matter, and clay, which promotes the adsorption and precipitation of heavy metals
in the sediments [6–8]. Arsenic (As) is a toxic metalloid and carcinogen widely existing
in natural environments [5]. Many works have indicated the As accumulation trends in
mangrove wetlands [5,9]. In the case of Pearl River port in Guangdong Province, China,
from the Seventh Five-Year Plan Period (1986–1990) to 2018–2019, the content of As in the
sediments increased from 8.9 to 52.08 mg kg−1 [9]. The As content in the intertidal plain and
mangrove sediments of Shenzhen Bay was up to 152.4 and 199.66 mg kg−1, respectively [10].
Additionally, the As content was also relatively high, reaching 35 and 70 mg kg−1 in the
mangrove sediments of Sydney (Australia) and Espirito Santo (Brazil), respectively [11,12].
However, potential impacts of increasing As pollution on the mangrove ecosystems and
the As phytoextraction performance of mangroves need to be addressed.
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Kandelia obovata (K. obovata) is not only the most widely distributed mangrove species
in China, but also a candidate for phytostabilization and ecological restoration of heavy
metals in the coastal mangrove wetland system in southeast China [13,14]. Moreover, the
mangrove possesses high tolerance to heavy metal (Cu, Cd, Zn, Pb, Hg, etc.) contamina-
tion [15–19]. Liu et al. (2014) studied the distribution of As in plants, waters, and sediments
of mangrove wetlands and concluded that K. obovata possesses a high phytoextraction
ability to As [20]. Heavy metals taken up by the plant may induce the production of
numerous reactive oxygen species (ROS) in cells that lead to the peroxidation of unsatu-
rated fat in cell membrane components and damage the cell membrane structure [15]. In
addition, the malondialdehyde (MDA) level, which is an important indicator of membrane
lipid peroxidation, increases in different tissues [19]. Meanwhile, the antioxidant enzymes
such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) can scavenge
ROS [21] and reduce oxidative stress, while changes in their activities can reflect the degree
of plant tolerance to heavy metal stresses [15,17,22]. In previous work, the metalloid As
had been found to induce oxidative stress in seedlings (Cajanus cajan) after exposure to
10 µmol L−1 As in the form of Na3AsO4 for 5 days, and much higher H2O2, O2

−, and MDA
contents were observed as compared with unstressed plants [23]. Recently, Kumar et al.
reported that a genetically modified rice plant with a high-affinity sulphate transporter
(OsSultr1;1) reduces oxidative burst of superoxide radicals and hydrogen peroxide under
As exposure [24]. These works revealed the crucial role of the defense regulator in plants to
As exposure, releasing ROS and activating the antioxidant defense system [25].

Nevertheless, there is still a gap in the knowledge of phytoextraction response and
antioxidant tolerance of mangrove seedlings to As. In this study, a mangrove sediment
environment was simulated to investigate the effects of As concentration on the growth,
antioxidant enzyme activities, As accumulation, and migration in the mangrove seedlings.
The toxic effects of As pollution on the seedlings were investigated, providing information
on phytoextraction capability and tolerance of K. obovata seedlings to As exposure.

2. Materials and Methods
2.1. Plant Material and Sampling

Healthy and same-size hypocotyls of K. obovata mangrove plants were collected from
the mangrove wetland in the Jiulong estuary, Fujian Province (24◦24′ N, 117◦55′ E). Then,
healthy and mature hypocotyls of the same size were selected and soaked in 1‰ potassium
permanganate solution for 1.5 h for surface disinfection before heavy metal treatment.

2.2. Experimental Design

The cultivated soil was collected from a subsurface sediment near the site of hypocotyls
collection. The physiochemical characteristics of the sediment are summarized in Table 1.
After removing debris from the collected sediments and homogeneous mixing, pure
Na2HAsO4·7H2O was added to the sediments, thoroughly mixed, and stored in the dark
for 1 month. Then, the prepared sediment planted with hypocotyls was packed into rectan-
gular glass culture boxes: 40 (length) × 30 (width) × 25 (height) cm3, containing 5 kg of
sediment and five same-size hypocotyls in each carrier. The six As concentrations of 0, 25,
50, 100, 150, and 200 mg kg−1 relatively to dry weight (DW) sediment were added to the
boxes. Each As concentration level was added in triplicate, then the boxes were cultured in
a greenhouse with natural light at 25 ◦C. All the boxes were kept wet by adding a small
volume of water to prevent sample drying. All the parameters were determined in plants
harvested after 16-month cultivation.



Water 2022, 14, 643 3 of 11

Table 1. Physicochemical characteristics of original collected sediment for seedling culture.

Total As
(mg kg−1)

Organic
Matter

(mg kg−1)

Available
N

(mg kg−1)

Available
P

(mg kg−1)

Available
K

(mg kg−1)

Cation Exchange
Capacity

(µmol kg−1)
pH

20.81 3.08 98.42 27.43 617.93 17.57 7.11

2.3. Sampling and Analysis
2.3.1. Determination of Seedling Height and Biomass

The seedling stem height was measured, and the biomass of roots, stems, and leaves
of K. obovata were also weighed (BSA124S, Sartorius Group, Beijing, China) after carefully
harvesting the plant. The plant parts were carefully killed at 105 ◦C for 30 min, then,
the samples were dried at 70 ◦C to constant weight, and the dry weight and moisture
content were calculated. The rest of the fresh samples were used for determination of
physiological indexes.

2.3.2. Determination of the Malondialdehyde in Plant

Half a gram of plant sample was added to 5 mL 5% TCA and homogenized in a
centrifuge at 3000 r min−1 for 10 min (Allegra 64R, Beckman Coulter, Inc., Brea, CA, USA).
Later, 2 mL of supernatant with 2 mL 0.67% TBA was added to the mixture and boiled
for 30 min on a 100 ◦C water bath, cooled, and centrifuged again. Then, the absorbance at
450 nm (A450), 532 nm (A532), and 600 nm (A600) of supernatant samples was measured
using a spectrometer (TU-1901, Beijing Pusi Co., Ltd., Beijing, China). The following
equation was used to calculate the MDA content (µmol/g) per DW of plant [26].

C
(
µmol L−1

)
= 6.45(A532 − A600)− 0.56A450 (1)

where A450, A532, and A600 represent the absorbance values at 450 nm, 532 nm, and
600 nm, respectively.

2.3.3. Determination of Antioxidant Enzyme Activity in Plant

The mature leaves and root tips of seedlings were extracted with enzyme solution [26]
by weighing 0.5 g of leaves and root tips each and putting them into an ice bath mortar,
adding 2-mL precooled phosphoric acid buffer and ground to a pulp. Then, the mortar
with phosphoric acid buffer was rinsed twice or thrice at a constant volume of 10 mL. After
centrifuging at 10,000 r min−1 for 20 min at 4 ◦C, the enzyme extract solution applied in
the test of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities
was separated from the supernatant.

SOD: A reaction mixture containing 0.3 mL of 130 µmol L−1 methionine, 0.3 mL of
750 µmol L−1 EDTA-Na2, 0.3 mL of 750 µmol L−1 nitroblue tetrazolium chloride, and 0.3 mL
of 20 µmol L−1 riboflavin was added to the enzyme extract solution. At the beginning, the
test tube with the reaction mixture was put into a constant temperature incubator under
illumination of 4000 lux for 20 min. The reaction was stopped by placing the tube in the
dark. The absorbance was recorded at 560 nm [26].

POD: A reaction mixture of 2.9 mL of 0.05 mol L−1 sodium phosphate buffer (pH 5.5)
was used for evaluating the activity of the POD enzyme. The preparation solutions were
1 mL of 2% H2O2, 1 mL of guaiacol, and 0.1 mL of enzyme extract. Then, 2 mL of 20%
trichloroacetic acid was added to stop the reaction. The absorbance was recorded at
470 nm [26].

CAT: 2.5 mL of enzyme extract and 2.5 mL of 0.1 mol L−1 H2O2 were added into a
triangular flask kept in a 30 ◦C water bath for 10 min. Then, 2.5 mL of 10% H2SO4 was
added immediately to ensure drastic extraction. The pretreated reaction was sensitized by a
pink color appearance by adding 0.1 mol L−1 of MnO4 solution for 30-min incubation [26].
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2.3.4. Determination of the Total As Concentration in Plants

The mature leaves, stems, and roots of seedlings were classified into groups, washed
with deionized water, dried at 50 ◦C for 48 h, and ground through a 100-mesh nylon
sieve [20]. A 0.5 g sample was weighed, then 7 mL of concentrated HNO3 and 2 mL of
H2O2 were added. After that, the mixture was heated during 7 min to 120 ◦C, held for
3 min, then heated up 180 ◦C for 10 min, finally held for 15 min using a high-throughput
closed microwave digestion system (CEM Mars 5, Matthews, NC, USA). The total As was
digested, diluted, and measured in a volume of 50 mL by inductively coupled plasma mass
spectrometry (Perkin Elmer Elan DRC-E, Waltham, MA, USA).

The bioaccumulation factor (BCF) and translocation factor (TF) were calculated to find
the absorption capacity and transport capacity of As from sediments to plants using the
following formula [20]:

BCF = As concentration of plant organ/As amount in soil (2)

TF = As concentration of plant organ/As concentration of root (3)

2.4. Data Analysis

Data analysis of variance (one-way ANOVA) and correlation analyses were performed
using SPSS 22.0 software (SPSS Inc., Chicago, IL, USA), and the significant differences
between the groups were compared with the LSD test. The diagrams were drawn using
Origin 21 (OriginLab Software, Northampton, MA, USA).

3. Results
3.1. The Effect of As Exposure on the Growth of Mangrove Seedlings

The effects of As exposure on the growth of seedlings is shown in Table 2. Under
25–100 mg kg−1 As concentration, no obvious difference in the height of seedlings was
registered compared to the control (p > 0.05), while the height and biomass significantly
reduced (p < 0.05) at As concentration of 150 mg kg−1. Under the exposure of 200 mg kg−1

As, the height, biomass of roots, stems, and leaves dramatically decreased to 75.98%, 45.04%,
63.44%, and 25.5% of the control sample, respectively (p < 0.05). In particular, the egregious
symptoms like blackening of the roots, weak generation of new roots, only 4–5 leaves
remaining, as well as inhibition of the seedlings growth were observed, with a mortality
rate of 20%.

Table 2. The effect of As exposure on growth and survival rate of Kandelia obovata seedlings.

As (mg kg−1) Stem High
(cm)

Root Biomass
(g DW)

Stem Biomass
(g DW)

Leaf Biomass
(g DW)

Survival Rate
(%)

CK 42.50 ± 2.58 c 11.14 ± 1.45 c 5.85 ± 0.35 b 3.99 ± 0.83 c 100
25 43.22 ± 2.25 c 10.67 ± 1.81 c 5.47 ± 0.55 b 4.90 ± 0.83 c 100
50 39.60 ± 5.16 bc 10.39 ± 1.10 bc 5.19 ± 0.24 b 4.01 ± 0.53 c 100

100 39.52 ± 3.14 bc 9.27 ± 1.13 bc 5.19 ± 0.18 b 2.93 ± 0.37 bc 100
150 35.77 ± 2.91 ab 8.16 ± 1.63 b 3.91 ± 0.28 a 2.42 ± 0.56 b 100
200 32.29 ± 3.09 a 5.02 ± 0.71 a 3.71 ± 0.36 a 0.98 ± 0.16 a 80

Note: Data are means ± standard errors of three replicates. Values within the same column followed by different
letters are significant (p < 0.05, n = 3).

3.2. Effects of As Exposure on MDA and Antioxidant Enzymes of Mangrove Seedlings

The MDA content in roots and leaves showed an increasing trend with the As con-
centration in roots and leaves (Figure 1A). In the range of 25–100 mg kg−1 As, there is
no significant impact on MDA (p > 0.05). However, the MDA sharply increased under
treatments with 150 and 200 mg kg−1 As (p < 0.05), which constituted 44.78% and 64.14%
of the control, respectively.
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Figure 1. Effect of As exposure on MDA and antioxidant enzyme activities in the seedlings. (A) MDA
concentration (nmol g−1 FW) in the root and the leaf; (B) SOD activity (U g−1 FW); (C) POD activity
(U g−1 min−1 FW); (D) CAT activity (mg g−1 min−1 FW). Treatments labeled with different letters
are significantly different (p < 0.05).

The antioxidant enzyme activity in roots and leaves increased with rising As con-
centration (Figure 1B–D) followed by a remarkable decline at As concentration above
150 mg kg−1, which was lower than the control.

The SOD enzyme activities in roots and leaves of seedlings increased notably to
the peak values of 153.56 U g−1 and 310 U g−1 at As concentrations of 50 mg kg−1 and
100 mg kg−1, respectively (p < 0.05), whereas they were reduced to a minimum of 52.73%
and 64.70% of the control group at 200 mg kg−1 As (Figure 1B).

The POD enzyme activities in roots and leaves of the seedlings reached the maximum
values of 143% and 128% of the control (p < 0.05) at 100 mg kg−1 As concentration (Figure 1C).
Treatment with 200 mg kg−1 As caused the drop of POD activities to the lowest values of
79.22% and 72.44% of the control.

At a concentration of 50 mg kg−1 As, the CAT enzyme activity in the roots slightly
increased by 1.16 times that of the control (p > 0.05), while it rose sharply to 1.45 times
that of the control at 100 mg kg−1 As (p < 0.05). Nevertheless, under As exposure of
200 mg kg−1, the CAT activities of roots and leaves reduced to 22.23% and 36.34% of the
control, respectively (p < 0.05). The correlation analysis of antioxidant enzymes in roots
and leaves (Table 3) proved a significant positive correlation between the activities of SOD,
POD, and CAT enzymes (p < 0.01).
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Table 3. Parameter correlations between antioxidant enzyme activities in the seedlings.

Parameter Root SOD Root POD Root CAT Leaf SOD Leaf POD Leaf CAT

Root SOD 1.000
Root POD 0.806 * 1.000
Root CAT 0.851 * 0.664 * 1.000
Leaf SOD 0.898 * 0.824 * 0.814 * 1.000
Leaf POD 0.890 * 0.951 * 0.760 * 0.887 * 1.0
Leaf CAT 0.841 * 0.855 * 0.707 * 0.899 * 0.878 * 1.000

Note: * indicates that the correlation at the 0.01 level was significant.

3.3. Effects of As Exposure on As Accumulation and Translocation in Plant Tissues
3.3.1. As Accumulation in Plant Tissues

Arsenic accumulation increased with input As concentration in roots, stems, and
leaves of the seedlings (Figure 2). The As concentration in the three plant parts reached
the peak values of 1256.08, 16.46, and 11.19 mg·kg−1 (31.48, 4.78, and 4.49 times that of
the control groups), respectively, at the 200 mg kg−1 As input concentration. Moreover,
significant differences were found in the As concentration in roots among all the groups
(p < 0.05).

Figure 2. The As concentrations in roots, stems, and leaves of the seedlings in the study. Different
letters were indicated significant differences (p < 0.05).

Figure 3 shows that with the increase of As input concentration, the proportion of As
concentration in root to that in plant tissues was 87.04–97.85%, showing an increasing trend.
On the contrary, the As accumulation in stems and leaves showed a downward trend,
accounting for 7.49–1.28% and 5.47–0.87%, respectively. Therefore, the As concentration in
the three treatment groups was as follows: roots > stems > leaves.
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Figure 3. Effects of As added concentration on As accumulation ratios in roots, stems, and leaves of
the seedlings.

3.3.2. Arsenic Transfer in the Plant Parts of the Mangrove Seedlings

The BCFroot value for all groups all exceeded unity, within a range of 1.92–5.69
(Figure 4A). Meanwhile, it increased with As concentration, reaching the peak values
of 2.96 times that of the control at 200 mg kg−1 As concentration. At the same time, the
BCFstem and BCFleaf values for each As treatment level were below unity, ranging from 0.17
to 0.07 and 0.12 to 0.05, respectively. Meanwhile, at 200 mg kg−1 input concentration of
As, the BCFstem and BCFleaf values were 45.09% and 42.3%, correspondingly, of those in
the control group. Furthermore, Figure 4B shows that the TFstem/root and TFleaf/root values
decreased as concentration increased (Figure 4B), ranging from 0.09 to 0.01 and 0.06 to
0.009, respectively. The TFstem/root and TFleaf/root values were 15.24% and 14.27% of the
control, respectively, at 200 mg kg−1 As input concentration.

Figure 4. BCF in roots, stems and leaves (A), and TF of As from roots to stems and leaves (B) in the
seedlings. Different letters were indicated significant differences (p < 0.05).
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4. Discussion
4.1. Effects of As Exposure on the Growth of the Seedlings

Arsenic is not an essential element in the plant-growing process. Nevertheless, several
studies had proven that small amounts of As stimulate plant growth, while high concen-
trations of As produce toxic effects in plants [27–29]. The toxicity manifested in a shorter
length of leaves and stems, the decrease in biomass and photosynthesis, membrane lipid
peroxidation, and even affected physiological functions, resulting in abnormal growth of
the plant. [27–29]. These basic findings are consistent with our study demonstrating that K.
obovata seedlings grew normally at low and medium As concentrations of 25–100 mg kg−1

(Table 1), while the seedlings’ growth were suppressed at As input concentration reached
150 mg kg−1, where the biomasses of roots, stems, and leaves were distinctly lower than the
control. The mortality rate was 20%, and the typical poisoning symptoms were manifested
at the As concentration of 200 mg kg−1, which is eventually the limit of tolerance to As.
Subsequently, Ren et al. (2021) confirmed that strong toxic action was observed in Typha
angustifolia L. at As concentration in soil reaching 200 mg kg−1 [29]. In general, our results
are consistent with that publication.

4.2. Effects of As Exposure on MDA and Antioxidant Enzymes

Excessive accumulation of heavy metals induces reactive oxygen species (ROS) in plant
cells, and MDA reflects the extent of damage to cell membranes. In response, plants activate
SOD enzyme to disproportionate ROS into O2 and H2O2, while POD and CAT decompose
H2O2 into nontoxic H2O and O2. In the present study, the antioxidant defense increased
along with As concentration, and reached a peak at 100 mg kg−1. Similar research reported
that an evident increase in H2O2 and thiobarbituric acid reactive substances (TBARS)
content appeared in two different cultivars of Chenopodium quinoa under As exposure
(150 and 300 µmol L−1 Na3AsO4) for 35 days [23]. These three enzymes cooperate to
scavenge ROS and avoid its excess, causing peroxidation of biomolecules and membrane
lipids in order to protect plants [30,31]. In our study, the antioxidant enzyme activity
increased and then decreased with As concentration. The MDA concentration did not
change significantly within the 25–100 mg kg−1 concentration range, whereas SOD, POD,
and CAT enzyme activities in roots and leaves peaked at 50 or 100 mg kg−1 concentration
levels. Hence, the antioxidant system is a key mechanism to resist As-induced lipid
peroxidation at As concentrations of up to 100 mg kg−1, resulting in slight MDA variation
with concentration. The obtained data demonstrated that mangrove plants coordinated
the activation of antioxidant defense systems (Table 3) to scavenge excess ROS, maintained
ROS homeostasis in seedlings, and improved the plant tolerance to As [16]. The MDA
content rose remarkably and the antioxidant enzyme activity declined significantly when
the As exposure concentration exceeded 150 mg kg−1. Thus, it was proven that high
As concentration induced the production of numerous ROS, exceeding the scavenging
capacity of antioxidant enzymes, and the balance of ROS in plants could not be maintained,
exacerbating membrane lipid peroxidation. A similar phenomenon was observed when
K. obovata was exposured by other heavy metals, such as Cd, Cu, and Hg [15,17,32]. In
other words, under contamination with heavy metals the mangrove seedlings may boost
antioxidant enzyme activity to enhance resistance. Nevertheless, when the exposure
exceeds the tolerance limit, membrane lipid peroxidation damaged the plant defense
system, resulting in reduced enzyme activities [15,17,32].

4.3. The Accumulation and Translocation of As in the Plant

The important indicators for measuring the ability of plants to accumulate As are
concentration, BCF, and TF of As. The larger the BCF and TF, the stronger the accumulation
and transport capacities [33,34]. Notably, when the accumulation factor exceeds unity,
the plant restored the contaminated soil [20,35,36]. According to our data on absorption,
transportation, and accumulation of As in the seedlings, the As accumulation increased with
As input concentration. As mainly accumulated in the roots, accounting for 87.04–97.85%
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of the total amount, and the maximum value was 1256.08 mg kg−1 (Figure 2). Therefore,
the ratio of As accumulation in various plant tissues was as follows: root > stem > leaf
(Figure 3). Additionally, the BCF range was 1.92–5.69, which was 11.59–76.33 times more
than that in stems and 16.00–112.25 times more than that in leaves (Figure 4A). However,
the TFs of stem and leaves were extremely low, below unity (Figure 4B), and declined with
increasing As concentration. The low TF indicates that the As exposure affected the ability
to transfer As to the aerial parts, such as stem and leaves, blocked As in the underground
part, and reduced the harmful effects to the aerial organs. These findings were in agreement
with other results under As, Cd, Cu, and Zn stresses [20,37–39]. The As accumulation in the
roots might be related to the formation of iron plaque on root surface based on our previous
laboratory work. The strong accumulation ability of iron plaque on root surface reduces the
toxic effects due to adsorption or coprecipitation of As [40,41]. The other potential causes
are fixing As absorbed by roots in the root cell wall [36], or bounding As by sulfhydryl
compounds and immobilizing them in the root [42], thus reducing the mobility of As. The
tolerance to inorganic arsenite, As(III) of mangrove seedlings manifested in lowering ROL,
translocating As, and releasing low-molecular-weight organic acids to reduce As toxicity,
and facilitating the As fixation in sediment [43].

The aforementioned results confirm that As accumulated mainly in roots, and the
fixation function of roots may be an important protective mechanism for the aerial parts’
survival. Furthermore, a linear regression relationship was found between the As con-
centration in roots and sediments (R2 = 0.976, p < 0.01, data not shown). The formula
demonstrated that the roots of mangrove seedlings may represent the As environmental
level and can be used as a biological indicator of As in polluted sediments.

5. Conclusions

The experiments performed in this study contribute to the increasing amount of
research on the effects of As on K. obovata seedlings. The plant seedlings coordinated activa-
tion of the antioxidant enzyme defense system to improve As tolerance while exposed to As
concentrations up to 100 mg kg−1. In contrast, high concentrations of As (150–200 mg kg−1)
led to excessive membrane lipid peroxidation, significantly reduced antioxidant enzyme
activities, and inhibited growth. Particularly, typical symptoms of toxicity and mortality at
200 mg kg−1 As concentration were observed, presumably, indicating that the tolerance
limit of resistance to As is reached. Moreover, the root system accumulated the major part
for As, and its fixation function played a critical role in protecting the aerial part of the plant,
which can be regarded as a biological indicator in sediments contaminated by As. Mean-
while, the high As tolerance and low transport characteristics of seedling roots indicate the
mangrove plant as a potential candidate for remediation in As polluted wetlands
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